学术报告:2018年5月23日, 下午 15:00-16:00, 杨鑫教授,University of Cincinnati

发布者:吕小俊发布时间:2018-04-27浏览次数:639

bevictor伟德官网邀请专家申请表

  

报告人

杨鑫

单位

University of Cincinnati

报告题目

Lifespan Estimate for the Partial Nonlinear Radiation Problems

报告时间

523

1500-1600

地点

第一报告厅

邀请人

王小六

报告摘要

  

This talk is about the lifespan estimate for the heat equation $u_t=\Delta   u$ in a bounded domain $\Omega$ in $\mathbb{R}^{n}(n\geq 2)$ with positive   initial data $u_{0}$ and partial nonlinear radiation boundary conditions.   First, the local existence and uniqueness of the classical solution will be   discussed. Secondly, both upper and lower bounds of the lifespan will be   shown. Finally, the asymptotic behaviour of the bounds concerning the nonlinearity   power $q$, the initial data $u_{0}$ and the area of the boundary part where   the nonlinear radiation occurs will be explored. This is a joint work with Zhengfang   Zhou.

  

报告人简介

Work Experience

• Visiting Assistant Professor, Department of Mathematical Sciences,   University of Cincinnati, August 2017 - current. Mentor: Bingyu Zhang.

  

Education

• Ph.D. in Mathematics, Michigan State University, MI, USA, June 2017.   Dissertation Advisor: Zhengfang Zhou.

• B.S. in Mathematics, Tsinghua University, Beijing, China, July 2011.

  

Research Interests

(1) Blow-up problems for nonlinear parabolic and wave equations.

(2) Random data Cauchy theory for dispersive equations